Name: _____

Basic: What is a function?

A **function** is an object which assigns exactly one output to every input.

- The **domain** of a function is the set of all values which can serve as its input.
- The **range** of a function is the set of all values which can serve as its output.
- Usually we will use letters such as f, g, and h to denote functions. An expression like f(x) represents the output of the function when the input is x.
- Since $f(x) = x^2$ and $g(t) = t^2$ both square the input to get the output, the functions are identical. In other words, f = g.
- We may also use informal function notation $y = x^2$ instead of $f(x) = x^2$

Complete the table using formal function notation, informal function notation, and a description.

Prob. #	Formal Function	Informal Function	Description
1	f(x) = x + 4		
2		y = 2x	
3		$y = x^2 - 3$	
4			Subtract 3 from the input, then multiply by 50
5	$g(x) = 3^x$		
6	$h(t) = t^2 + 2t$		
7		y = x	
8	$g(x) = \sqrt{x}$		
9		<i>y</i> = 80	
10			The negative reciprocal of the input.

Name: _____

Intermediate: Combining Functions

Functions can be combined in many of the same ways that numbers can. For example, the function f + g represents the function whose output is f(x) + g(x) when the input of the function is x.

In other words, (f + g)(x) = f(x) + g(x).

An additional way of combining functions is **function composition**. The function $f \circ g$ (read as "f composed with g") is defined by $(f \circ g)(x) = f(g(x))$. The output of the inner function is used as the input for the outer function.

Let f, g, and h be the functions defined by f(x) = x + 2, g(t) = 2t, and $h(\theta) = \theta^2$.

Write the formal function rule for each of the following functions.

Prob. #	Function Name	Function Rule
11	f + g	
12	h-g	
13	$g\cdot h$	
14	3f + 2g	
15	$f \circ h$	
16	$h \circ f$	

Advanced: Can a function's input and output be more than just a number?

Functions can have a domain and range beyond just the set of real numbers.

17. Let *f* be a complex function defined by $f(z) = z^3$. Find f(2 + i).

18. Let *d* be a function on ordered pairs of real numbers defined by $d((x, y)) = \sqrt{x^2 + y^2}$. Notice this is equivalent to making *d* a function of 2 variables. Find d((5, 12)).

19. Let α be a function on functions defined by $\alpha(f,g) = f + 3g$. If f(x) = 5x and $g(x) = x^2$, find $\alpha(f,g)$.